

Domino Michael/Mannich/N-Alkylation Route to the Tetrahydrocarbazole Framework of Aspidosperma Alkaloids: Concise Total Syntheses of (–)-Aspidospermidine, (–)-Tabersonine, and (–)-Vincadifformine

Senzhi Zhao and Rodrigo B. Andrade*

Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States

Supporting Information

ABSTRACT: We report a novel, asymmetric domino Michael/Mannich/N-alkylation sequence for the rapid assembly of the tetrahydrocarbazole framework of *Aspidosperma* alkaloids. This method was utilized in the concise total syntheses of classical targets (–)-aspidospermidine, (–)-tabersonine, and (–)-vincadifformine in 10 or 11 steps. Additional key steps include ring-closing metathesis to prepare the D-ring and Bosch–Rubiralta spirocyclization to prepare the C-ring.

Monoterpene indole alkaloids of the *Aspidosperma* class, which include over 250 unique members, are fascinating natural products endowed with an irresistible combination of architectural complexity and pharmacological activity.¹ Moreover, these intriguing molecules have greatly benefited both organic chemistry and medicine. The structures of four classical members of the *Aspidosperma* family, namely (-)-aspidospermine (1a),² (-)-aspidospermidine (1b),³ (-)-tabersonine (2),⁴ and (-)-vincadifformine (3),⁵ are shown in Figure 1. Of these,

aspidospermidine (1b) is the most representative insofar as it possesses the hallmark ABCDE pentacyclic framework and common structural denominator among the *Aspidosperma* alkaloids. Accordingly, targets 1-4 have stimulated considerable interest in the synthetic community dating back to Stork's elegant, stereoselective total synthesis of 1a in 1963 and continues unabated to this day.^{2a}

Although we have been engaged in the total synthesis of complex indole alkaloids of the *Strychnos* class⁶ and most recently rearranged *Aspidosperma* alkaloids,⁷ our methods were ill suited for preparing targets such as 1-4. We were, nonetheless, intrigued by two disparate bodies of work whose

merger, if successful, would offer facile, concise access to appropriately functionalized ABE tetrahydrocarbazole cores of 1-4 with satisfactory control over relative and absolute stereochemistry. Specifically, we were inspired by Magnus's elegant and step-efficient indole-2,3-quinodimethane approach to *Aspidosperma* and *Kospia* alkaloids^{3h,8} and Ellman's clever use of metalloenamines derived from *tert*-butanesulfinylimines as asymmetric nucleophiles.⁹ Retrosynthetically, we reasoned that tetrahydrocarbazole 4 could be obtained in one operation by means of a domino Michael/Mannich sequence (Scheme 1)

Scheme 1. Retrosynthetic Analysis of Tetrahydrocarbazole 4 via Novel Domino Michael/Mannich/N-Alkylation Route

from the reaction of *N*-sulfinyl metallodienamine **5** and methyl ethacrylate (**6**).¹⁰ The efficiency of the operation could be enhanced in the forward sense by productive trapping the *N*-sulfinylanion intermediate with allyl bromide (7). Metallodienamine **5** would in turn be derived from *N*-sulfinylimine **8**, which was readily accessible from commercial **9** and (*R*)-*N*-tertbutanesulfinamide (**10**).⁹

The synthesis began with the condensation of *N*benezensulfonyl-2-methylindole-3-carboxaldehyde (9), sulfinamide 10, and Ti(OEt)₄ to afford *N*-sulfinylimine 8 in 97% yield (Scheme 2). Treatment of 8 with 1.2–2.2 equiv of LHMDS in THF at -78 °C generated *N*-sulfinyl metallodienamine 5 via deprotonation of the acidic 2-methyl group. Addition of methyl ethacrylate (6)¹¹ triggered a Michael reaction whose enolate

Received: August 5, 2013 Published: August 23, 2013

stereoselectively cyclized onto the regenerated *N*-sulfinylimine moiety in a Mannich fashion; trapping the resulting anion with 5 equiv of allyl bromide in DMF furnished tetrahydrocarbazole 4 in 81–90% yield (dr = 11:1).¹² We rationalized the relative and absolute stereocontrol in the domino Michael/Mannich sequence by means of transition state 11, which is consistent with those posited by Ellman¹³ and Davis.¹⁴ To the best of our knowledge, this method represents the first use of a vinylogue of an *N*-sulfinyl metalloenamine, domino process wherein the *in situ*-generated nucleophile cyclizes onto an *N*-sulfinylimine, and intramolecular process wherein β -amino esters (i.e., Mannich bases) bearing α -quaternary stereocenters are prepared in both high yield and diastereoselectivity.

The next stage of the synthesis called for ring-closing metathesis (RCM) of the D-ring, a strategy employed by Rawal in the *Aspidosperma* series.^{3ag,4j} To this end, we converted the methyl ester in **12** to a requisite terminal olefin via the intermediary aldehyde. This goal was best accomplished by sequential reduction to the alcohol with DIBAL-H and oxidation with the Dess–Martin periodinane (DMP) in 98% overall yield.¹⁵ Wittig methylenation of **12** and ring-closing metathesis under the agency of 10 mol% Hoveyda–Grubbs second generation catalyst (HG-II)¹⁶ delivered ABDE tetracycle **13** in 90% overall yield.

We envisioned installing the C-ring with a step-efficient process discovered by Bosch and Rubiralta wherein an *N*-benzenesulfonyl protecting group on indole is transferred to an appropriately positioned primary hydroxyl group by the action of *t*-BuOK; spirocyclization of the ensuing indolyl anion at C3 with the benzenesulfonate ester establishes the C-ring.^{17,18} Accordingly, removal of the *N*-sulfinyl group in **13** with HCl in MeOH and *N*-alkylation with 2-bromoethanol, Na₂CO₃ in refluxing EtOH gave substrate **14** in 80% overall yield. Addition of 2 equiv of *t*-BuOK in THF at 0 °C effected the Bosch–Rubiralta spirocyclization to afford ABCDE pentacycle **15** in 60% yield.

Endgame for 1b, 3, and 4 commenced with indolenine 15. Whereas previous reports had employed a two-step protocol

(i.e., hydride reduction of the imine and metal-catalyzed hydrogenation of the D-ring olefin), we found hydrogenation of **15** over Adams's catalyst in EtOAc at room temperature delivered (–)-aspidospermidine (**1b**) in a single step (75% yield). The synthesis of **2** featured tactics first employed in Overman's elegant synthesis of classical *Strychnos* alkaloid akuammicine.¹⁹ Specifically, treatment of **15** with LDA at -78 °C and quenching the intermediary metalloenamine with Mander's reagent²⁰ furnished (–)-tabersonine (**2**) in 73% yield. Hydrogenation of **2** over Adams's catalyst in EtOAc afforded (–)-vincadifformine (**3**) in 81% yield. Spectral data for **1b**, **2**, and **3** (e.g., ¹H and ¹³C NMR, IR, optical rotation) were in complete agreement with those reported in the literature.^{3–5}

In summary, we have completed concise, asymmetric total syntheses of classical *Aspidosperma* alkaloids (–)-aspidospermidine (**1b**, 10 steps, 27% overall yield), (–)-tabersonine (**2**, 10 steps, 26% overall yield), and (–)-vincadifformine (**3**, 11 steps, 22% overall yield) from commercial starting materials. Key steps include a novel domino Michael/Mannich/N-alkylation sequence to access the tetrahydrocarbazole framework of the *Aspidosperma* alkaloids, ring-closing metathesis to prepare the D-ring, and the Bosch–Rubiralta spirocyclization to prepare the C-ring. We are currently exploring the scope of this novel process and applying it toward the total synthesis of other complex, bioactive alkaloids.

ASSOCIATED CONTENT

Supporting Information

Experimental details and spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

randrade@temple.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (CHE-1111558). We thank Dr. Charles DeBrosse, Director of the NMR Facilities at Temple Chemistry, for kind assistance with NMR experiments. We thank Prof. Chris Schafmeister (Temple University) for access to LC-MS instrumentation. We thank Prof. David Dalton for carefully reading our manuscript, Dr. Richard Pederson (Materia, Inc.) for catalyst support, and the reviewers for helpful comments.

REFERENCES

(1) Saxton, J. E. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York, 1998; Vol. 51, Chapter 1.

(2) For racemic syntheses of 1a, see: (a) Stork, G.; Dolfini, J. E. J. Am. Chem. Soc. 1963, 85, 2872-2873. (b) Ban, Y.; Sato, Y.; Inoue, I.; Nagai, M.; Oishi, T.; Terashima, M.; Yonemitsu, O.; Kanaoka, Y. Tetrahedron Lett. 1965, 6, 2261-2268. (c) Kuehne, M. E.; Bayha, C. Tetrahedron Lett. 1966, 7, 1311-1315. (d) Stevens, R. V.; Fitzpatrick, J. M.; Kaplan, M.; Zimmerman, R. L. J. Chem. Soc., Chem. Commun. 1971, 857-858. (e) Martin, S. F.; Desai, S. R.; Phillips, G. W.; Miller, A. C. J. Am. Chem. Soc. 1980, 102, 3294-3296. (f) Pearson, A. J.; Rees, D. C. J. Chem. Soc., Perkin Trans. 1 1982, 2467-2476. (g) Wu, P. L.; Chu, M.; Fowler, F. W. J. Org. Chem. 1988, 53, 963-972. For asymmetric syntheses of 1a see: (h) Meyers, A. I.; Berney, D. J. Org. Chem. 1989, 54, 4673-4676. (i) Fukuda, Y.; Shindo, M.; Shishido, K. Org. Lett. 2003, 5, 749-751. (j) Coldham, I.; Burrell, A. J. M.; White, L. E.; Adams, H.; Oram, N. Angew. Chem., Int. Ed. 2007, 46, 6159-6162. (k) Lajiness, J. P.; Jiang, W.; Boger, D. L. Org. Lett. 2012, 14, 2078-2081.

(3) For racemic syntheses of 1b see: (a) Camerman, A.; Camerman, N.; Kutney, J. P.; Piers, E. Tetrahedron Lett. 1965, 637-642. (b) Kutney, J. P.; Abdurahman, N.; Le Quesne, P.; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1966, 88, 3656-3657. (c) Harley-Mason, J.; Kaplan, M. Chem. Commun. 1967, 915-916. (d) Kutney, J. P.; Piers, E.; Brown, R. T. J. Am. Chem. Soc. 1970, 92, 1700-1704. (e) Kutney, J. P.; Abdurahman, N.; Gletsos, C.; Le Quesne, P.; Piers, E.; Vlattas, I. J. Am. Chem. Soc. 1970, 92, 1727-1735. (f) Laronze, J. Y.; Laronze-Fontaine, J.; Lévy, J.; Le Men, J. Tetrahedron Lett. 1974, 491-494. (g) Ban, Y.; Yoshida, K.; Goto, J.; Oishi, T. J. Am. Chem. Soc. 1981, 103, 6990-6992. (h) Gallagher, T.; Magnus, P.; Huffman, J. J. Am. Chem. Soc. 1982, 104, 1140-1141. (i) Mandal, S. B.; Giri, V. S.; Sabeena, M. S.; Pakrashi, S. C. J. Org. Chem. 1988, 53, 4236-4241. (j) Le Menez, P.; Kunesch, N.; Liu, S.; Wenkert, E. J. Org. Chem. 1991, 56, 2915-2918. (k) Wenkert, E.; Liu, S. J. Org. Chem. 1994, 59, 7677-7682. (1) Forns, P.; Diez, A.; Rubiralta, M. J. Org. Chem. 1996, 61, 7882-7888. (m) Callaghan, O.; Lampard, C.; Kennedy, A. R.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1999, 995-1002. (n) Toczko, M. A.; Heathcock, C. H. J. Org. Chem. 2000, 65, 2642-2645. (o) Patro, B.; Murphy, J. A. Org. Lett. 2000, 2, 3599-3601. (p) Banwell, M. G.; Smith, J. A. J. Chem. Soc., Perkin Trans. 1 2002, 2613-2618. (q) Banwell, M. G.; Lupton, D. W.; Willis, A. C. Aust. J. Chem. 2005, 58, 722-737. (r) Sharp, L. A.; Zard, S. Z. Org. Lett. 2006, 8, 831-834. (s) Callier-Dublanchet, A.-C.; Cassayre, J.; Gagosz, F.; Quiclet-Sire, B.; Sharp, L. A.; Zard, S. Z. Tetrahedron 2008, 64, 4803-4816. (t) Burrell, A. J. M.; Coldham, I.; Watson, L.; Oram, N.; Pilgram, C. D.; Martin, N. G. J. Org. Chem. 2009, 74, 2290-2300. (u) Sabot, C.; Guérard, K. C.; Canesi, S. Chem. Commun. 2009, 2941-2943. (v) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem., Int. Ed. 2010, 49, 5767-5770. (w) Cho, H. K.; Tam, N. T.; Cho, C. G. Bull. Kor. Chem. Soc. 2010, 31, 3382-3384. (x) Guérard, K. C.; Sabot, C.; Beaulieu, M.-A.; Giroux, M.-A.; Canesi, S. Tetrahedron 2010, 66, 5893-5901. (y) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc. 2012, 134, 14563-14572. (z) McMurray, L.; Beck, E. M.; Gaunt, M. J. Angew. Chem., Int. Ed. 2012, 51, 9288-9291. (aa) Kawano, M.; Kiuchi, T.; Negishi, S.; Tanaka, H.; Hoshikawa, T.; Matsuo, J.; Ishibashi, H. Angew. Chem., Int. Ed. 2013, 52, 906-910. See also ref 2j. For asymmetric syntheses of 1b see: (ab) Node, M.; Nagasawa, H.; Fuji, K.

J. Am. Chem. Soc. 1987, 109, 7901-7903. (ac) Node, M.; Nagasawa, H.; Fuji, K. J. Org. Chem. 1990, 55, 517-521. (ad) Desmaële, D.; d'Angelo, J. J. Org. Chem. 1994, 59, 2292-2303. (ae) Schultz, A. G.; Pettus, L. J. Org. Chem. 1997, 62, 6855-6861. (af) Iyengar, R.; Schildknegt, K.; Aubé, J. Org. Lett. 2000, 2, 1625-1627. (ag) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 4628-4641. (ah) Marino, J. P.; Rubio, M. B.; Cao, G.; de Dios, A. J. Am. Chem. Soc. 2002, 124, 13398-13399. (ai) Gnecco, D.; Vázquez, E.; Galindo, A.; Terán, J. L.; Orea, L.; Bernès, S.; Enríquez, R. G. ARKIVOC 2003, 185-192. (aj) Iyengar, R.; Schildknegt, K.; Morton, M.; Aubé, J. J. Org. Chem. 2005, 70, 10645-10652. (ak) Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. J. Org. Chem. 2008, 73, 7498-7508. (al) Suzuki, M.; Kawamoto, Y.; Sakai, T.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2009, 11, 653-655. (am) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D.W. C. Nature 2011, 475, 183-188. (an) Li, Z.; Zhang, S.; Wu, S.; Shen, X.; Zou, L.; Wang, F.; Li, X.; Peng, F.; Zhang, H.; Shao, Z. Angew. Chem., Int. Ed. 2013, 52, 4117-4121. (ao) Nidhiry, J. E.; Prasad, K. R. Tetrahedron 2013, 69, 5525-5536.

(4) For racemic syntheses of 2 see: (a) Ziegler, F. E.; Bennett, G. B. J. Am. Chem. Soc. 1971, 93, 5930-5931. (b) Ziegler, F. E.; Bennett, G. B. J. Am. Chem. Soc. 1973, 95, 7458-7464. (c) Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Am. Chem. Soc. 1979, 101, 6414-6420. (d) Lévy, J.; Laronze, J.-Y.; Laronze, J.; Le Men, J. Tetrahedron Lett. 1978, 1579-1580. (e) Kuehne, M. E.; Okuniewitcz, F. J.; Kirkemo, C. L.; Bohnert, J. C. J. Org. Chem. 1982, 47, 1335-1343. (f) Kuehne, M. E.; Bornmann, W. G.; Earley, W. G.; Marko, I. J. Org. Chem. 1986, 51, 2913-2927. (g) Kuehne, M. E.; Podhorez, D. E.; Mulamba, T.; Bornmann, W. G. J. Org. Chem. 1987, 52, 347-353. (h) Kalaus, G.; Greiner, I.; Kajtár-Peredy, M.; Brlik, J.; Szabó, L.; Szántay, C. J. Org. Chem. 1993, 58, 1434-1442. (i) Kuehne, M. E.; Wang, T.; Seaton, P. J. J. Org. Chem. 1996, 61, 6001-6008. (j) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1998, 120, 13523-13524. For asymmetric syntheses of 2 see: (k) Kuehne, M. E.; Podhorez, D. E. J. Org. Chem. 1985, 50, 924-929. (1) Kuehne, M. E.; Bandarage, U. K.; Hammach, A.; Li, Y.-L.; Wang, T. J. Org. Chem. 1998, 63, 2172-2183. (m) Kobayashi, S.; Peng, G.; Fukuyama, T. Tetrahedron Lett. 1999, 40, 1519-1522 See also ref 3ag.

(5) For racemic syntheses of 3 see: (a) Kutney, J. P.; Chan, K. K.;
Failli, A.; Fromson, J. M.; Gletsos, C.; Nelson, V. R. J. Am. Chem. Soc.
1968, 90, 3891–3893. (b) Laronze, J.-Y.; Laronze-Fontaine, J.; Lévy,
J.; Le Men, J. Tetrahedron Lett. 1974, 15, 491–494. (c) Kuehne, M. E.;
Roland, D. M.; Hafter, R. J. Org. Chem. 1978, 43, 3705–3710.
(d) Kuehne, M. E.; Matsko, T. H.; Bohnert, J. C.; Kikemo, C. L. J. Org.
Chem. 1979, 44, 1063–1068. (e) Barsi, M. C.; Das, B. C.; Fourrey, J.
L.; Sundaramoorthi, R. J. Chem. Soc., Chem. Commun. 1985, 88–89.
(f) Kalaus, G.; Greiner, I.; Kajtár-Peredy, M.; Brlik, J.; Szabó, L.;
Szántay, C. J. Org. Chem. 1993, 58, 1434–1442. (g) Kuehne, M. E.;
Wang, T.; Seaton, P. J. J. Org. Chem. 1996, 61, 6001–6008.
(h) Kobayashi, S.; Peng, G.; Fukuyama, T. Tetrahedron Lett. 1999, 40, 1519–1522. For asymmetric syntheses of 3 see: (i) Pandey, G.;
Kumara, P. C. Org. Lett. 2011, 13, 4672–4675 See also refs 4k, 4l, 3ag, and 3am.

(6) (a) Sirasani, G.; Andrade, R. B. Org. Lett. 2009, 11, 2085–2088.
(b) Sirasani, G.; Paul, T.; Dougherty, W., Jr.; Kassel, S.; Andrade, R. B. J. Org. Chem. 2010, 75, 3529–3532. (c) Sirasani, G.; Andrade, R. B. Org. Lett. 2011, 13, 4736–4737. (d) Sirasani, G.; Andrade, R. B. In Strategies and Tactics in Organic Synthesis; Harmata, M., Ed.; Academic Press: New York, 2013; Vol. 9, pp 1–44.

(7) Zhao, S.; Sirasani, G.; Vaddypally, S.; Zdilla, M.; Andrade, R. B. Angew. Chem., Int. Ed. 2013, 52, 8309–8311.

(8) (a) Magnus, P.; Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem. Res. **1984**, *17*, 35–41. (b) Cardwell, K.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. **1988**, *110*, 2242–2248.

(9) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600-3740.

(10) For reviews of domino reactions in synthesis see: (a) Pellissier, H. Chem. Rev. 2013, 113, 442–524. (b) Tietze, L. F.; Rackelmann, N.

Pure Appl. Chem. 2004, 76, 1967–1983. (c) Tietze, L. F. Chem. Rev. 1996, 96, 115–136.

(11) Kuang, Y.-Y.; Chen, F.-E. Org. Prep. Proced. Int. 2005, 37, 184–188.

- (12) The relative and absolute stereochemistry of tetrahydrocarbazole 4 was established by chemical correlation with 1b, 2, and 3.
- (13) Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 12-13.

(14) Davis, F. A. J. Org. Chem. 2006, 71, 8993-9003.

(15) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
(16) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168–8179.

(17) Rubiralta, M.; Diez, A.; Bosch, J.; Solans, S. J. Org. Chem. 1989, 54, 5591–5597.

(18) For a similar use of this tactic applied toward (\pm) pseudotabersonine see: Cheng, B.; Sunderhaus, J.; Martin, S. F. Org. Lett. **2010**, 12, 3622–3625.

(19) Angle, S. R.; Fevig, J. M.; Knight, S. D.; Marquis, R. W., Jr.; Overman, L. E. J. Am. Chem. Soc. **1993**, 115, 3966–3976.

(20) Crabtree, S. R.; Mander, L. N.; Sethi, S. P. Org. Synth. 1991, 70, 256–264.